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INTRODUCTION 

In mathematics, in the field of differential equations, a boundary value problem is a differential 

equation together with a set of additional restraints, called the boundary conditions. A solution to 

a boundary value problem is a solution to the differential equation which also satisfies the 

boundary conditions. 

Boundary value problems arise in several branches of physics as any physical differential 

equation will have them. Problems involving the wave equation, such as the determination of 

normal modes, are often stated as boundary value problems. A large class of important boundary 

value problems are the Sturm–Liouville problems. The analysis of these problems involves the 

Eigen functions of a differential operator. 

To be useful in applications, a boundary value problem should be well posed. This means that 

given the input to the problem there exists a unique solution, which depends continuously on the 

input. Much theoretical work in the field of partial differential equations is devoted to proving 

that boundary value problems arising from scientific and engineering applications are in fact 

well-posed. 

Among the earliest boundary value problems to be studied is the Dirichlet problem, of finding 

the harmonic functions (solutions to Laplace's equation); the solution was given by the 

Dirichlet's principle. 

 

DEFINITIONS OF MATHEMATICS 

Aristotle defined mathematics as "the science of quantity", and this definition prevailed until the 

18th century. Starting in the 19th century, when the study of mathematics increased in rigor and 

began to address abstract topics such as group theory and projective geometry, which have no 

clear-cut relation to quantity and measurement, mathematicians and philosophers began to 

propose a variety of new definitions. Some of these definitions emphasize the deductive 

character of much of mathematics, some emphasize its abstractness, some emphasize certain 

topics within mathematics. Today, no consensus on the definition of mathematics prevails, even 

among professionals. There is not even consensus on whether mathematics is an art or a science. 

A great many professional mathematicians take no interest in a definition of mathematics, or 

consider it undefinable. Some just say, "Mathematics is what mathematicians do." 

Three leading types of definition of   mathematics   are   called logicist, intuitionist, and 

formalist, each reflecting a different philosophical school of thought. All have severe problems, 

none has widespread acceptance, and no reconciliation seems possible. 

An early definition of mathematics in terms of logic was Benjamin Peirce's "the science that 

draws necessary conclusions" (1870). In the Principia Mathematical, Bertrand Russell and 
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Greek mathematician Pythagoras (c. 570 – c. 495 BC), commonly credited with discovering the 

Pythagorean Theorem. 

Alfred North Whitehead advanced the philosophical program known as logicism, and attempted 

to prove that all mathematical concepts, statements, and principles can be defined and proven 

entirely in terms of symbolic logic. A logicist definition of mathematics is Russell's "All 

Mathematics is Symbolic Logic" (1903).  

Intuitionist definitions, developing from the philosophy of mathematician L.E.J. Brouwer, 

identify mathematics with certain mental phenomena. An example of an intuitionist definition is 

"Mathematics is the mental activity which consists in carrying out constructs one after the other." 

A peculiarity of intuitionism is that it rejects some mathematical ideas considered valid 

according to other definitions. In particular, while other philosophies of mathematics allow 

objects that can be proven to exist even though they cannot be constructed, intuitionism allows 

only mathematical objects that one can actually construct. 

Formalist definitions identify mathematics with its symbols and the rules for operating on them. 

Haskell Curry defined mathematics simply as "the science of formal systems". A formal system 

is a set of symbols, or tokens, and some rules telling how the tokens may be combined into 

formulas. In formal systems, the word axiom has a special meaning, different from the ordinary 

meaning of "a self-evident truth". In formal systems, an axiom is a combination of tokens that is 

included in a given formal system without needing to be derived using the rules of the system. 
 

The evolution of mathematics might be seen as an ever-increasing series of abstractions, or 

Alternatively an expansion of subject matter. The first abstraction, which is shared by many 

animals, was probably that of numbers: the realization that a collection of two apples and a 

collection of two oranges (for example) have something in common, namely quantity of their 

members. 

In addition to recognizing how to count physical objects, prehistoric peoples also recognized 

how to   count abstract quantities,   like   time –   days, seasons,   years. Elementary arithmetic 

(addition, subtraction, multiplication and division) naturally followed. 

Since numeracy pre-dated writing, further steps were needed for recording numbers such as 

tallies or the knotted strings called quipu used by the Inca to store numerical data. Numeral 

systems have been many and diverse, with the first known written numerals created by 

Egyptians in Middle Kingdom texts such as the Rhind Mathematical Papyrus. 
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MAYAN NUMERALS 

The earliest uses of mathematics were in trading, land measurement, painting and weaving 

patterns and the recording of time. More complex mathematics did not appear until around 3000 

BC, when the Babylonians and Egyptians began using arithmetic, algebra and geometry for 

taxation and other financial calculations, for building and construction, and for astronomy. The 

systematic study of mathematics in its own right began with the Ancient Greeks between 600 

and 300 BC. 

Mathematics has since been greatly extended, and there has been a fruitful interaction between 

mathematics and science, to the benefit of both. Mathematical discoveries continue to be made 

today. According to Mikhail B. Sevryuk, in the January 2006 issue of the Bulletin of the 

American Mathematical Society, "The number of papers and books included in the Mathematical 

Reviews database since 1940 (the first year of operation of MR) is now more than 1.9 million, 

and more than 75 thousand items are added to the database each year. The overwhelming 

majority of works in this ocean contain new mathematical theorems and their proofs." 

SPHERICAL HARMONICS 

In mathematics, spherical harmonics are the angular portion of a set of solutions to Laplace's 

equation. Represented in a system of spherical coordinates, Laplace's spherical harmonics 

are a specific set of spherical harmonics that forms an orthogonal system, first introduced by 

Pierre Simon de Laplace in 1782. Spherical harmonics are important in many theoretical and 

practical applications, particularly in the computation of atomic orbital electron configurations, 

representation of gravitational fields, geoids, and the magnetic fields of planetary bodies and 

stars, and characterization of the cosmic microwave background radiation. In 3D computer 

graphics, spherical harmonics play a special role in a wide variety of topics including indirect 

lighting (ambient occlusion, global illumination, precomputed radiance transfer, etc.) and 

recognition of 3D shapes. 

 

Spherical harmonics were first investigated in connection with the Newtonian potential of 

Newton's law of universal gravitation in three dimensions. In 1782, Pierre-Simon de Laplace 

had, in his Mécanique Céleste, determined that the gravitational potential at a point x associated 

to a set of point masses mi located at points xi was given by 

Each term in the above summation is an individual Newtonian potential for a point mass. Just 

prior to that time, Adrien-Marie Legendre had investigated the expansion of the Newtonian 

potential in powers of r = |x| and r1 = |x1|. He discovered that if r ≤ r1 then 

 

Where γ is the angle between the vectors x and x1. The functions Pi are the Legendre 

polynomials, and they are a special case of spherical harmonics. Subsequently, in his 1782 

memoire, Laplace investigated these coefficients using spherical coordinates to represent the 

angle γ between x1 and x. (See Applications of Legendre polynomials in physics for a more 

detailed analysis.) 
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In 1867, William Thomson (Lord Kelvin) and Peter Guthrie Tait introduced the solid spherical 

harmonics in their Treatise on Natural Philosophy, and also first introduced the name of 

"spherical harmonics" for these functions. The solid harmonics were homogeneous solutions of 

Laplace's equation 

By examining Laplace's equation in spherical coordinates, Thomson and Tait recovered 

Laplace's spherical harmonics. The term "Laplace's coefficients" was employed by William 

Whewell to describe the particular system of solutions introduced along these lines, whereas 

others reserved this designation for the zonal spherical harmonics that had properly been 

introduced by Laplace and Legendre. 

The 19th century development of Fourier series made possible the solution of a wide variety of 

physical problems in rectangular domains, such as the solution of the heat equation and wave 

equation. This could be achieved by expansion of functions in series of trigonometric 

functions. Whereas the trigonometric functions in a Fourier series represent the fundamental 

modes of vibration in a string, the spherical harmonics represent the fundamental modes of 

vibration of a sphere in much the same way. Many aspects of the theory of Fourier series could 

be generalized by taking expansions in spherical harmonics rather than trigonometric functions. 

This was a boon for problems possessing spherical symmetry, such as those of celestial 

mechanics originally studied by Laplace and Legendre. 

The prevalence of spherical harmonics already in physics set the stage for their later importance 

in the 20th century birth of quantum mechanics. The spherical harmonics are Eigen functions of 

the square of the orbital angular momentum operator and therefore they represent the different 

quantized configurations of atomic orbitals. 

LAPLACE'S SPHERICAL HARMONICS 
 

Real (Laplace) spherical harmonics for to   (top to bottom) and to (left to 

right). The negative order harmonics are rotated about the    axis by with respect 

to the positive order ones. 

 

Laplace's equation imposes that the divergence of the gradient of a scalar field f is zero. In 

spherical coordinates this is: 
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Consider the problem of finding solutions of the form f(r,θ,φ) = R(r)Y(θ,φ). By separation of 

variables, two differential equations result by imposing Laplace's equation: 

 

The second equation can be simplified under the assumption that Y has the form Y(θ,φ) = 

Θ(θ)Φ(φ). Applying separation of variables again to the second equation gives way to the pair of 

differential equations 

 

for some number m. A priori, m is a complex constant, but because Φ must be a periodic 

function whose period evenly divides 2π, m is necessarily an integer and Φ is a linear 

combination of the complex exponentials e±imφ. The solution function Y(θ,φ) is regular at the 

poles of the sphere, where θ=0,π. Imposing this regularity in the solution Θ of the second 

equation at the boundary points of the domain is a Sturm–Liouville problem that forces the 

parameter λ to be of the form λ = ℓ(ℓ+1) for some non-negative integer with ℓ ≥ |m|; this is also 

explained below in terms of the orbital angular momentum. Furthermore, a change of variables 

t= cosθ transforms this equation into the Legendre equation, whose solution is a multiple of the 

associated Legendre polynomial . Finally, the equation for R has solutions of the 

form R(r) = Arℓ + Br−ℓ−1; requiring the solution to be regular throughout R3 forces B = 0. 

 

Here the solution was assumed to have the special form Y(θ,φ) = Θ(θ)Φ(φ). For a given value of 

ℓ, there are 2ℓ+1 independent solutions of this form, one for each integer m with −ℓ ≤ m ≤ ℓ. 

These angular solutions are a product of trigonometric functions, here represented as a complex 

exponential, and associated Legendre polynomials: 

 

which fulfill 

 

Here is called a spherical harmonic function of degree ℓ and order m, is an 

associated Legendre polynomial, N is a normalization constant, and θ and φ represent colatitude 

and longitude, respectively. In particular, the colatitude θ, or polar angle, ranges from 0 at the 

North Pole to π at the South Pole, assuming the value of π/2 at the Equator, and the longitude φ, 

or azimuth, may assume all values with 0 ≤ φ < 2π. For a fixed integer ℓ, every solution Y(θ,φ) 

of the Eigen value problem. 
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is a linear combination of . In fact, for any such solution, rℓY(θ,φ) is the expression in 

spherical coordinates of a homogeneous polynomial that is harmonic, and so counting 

dimensions shows that there are 2ℓ+1 linearly independent such polynomials. 

 

The general solution to Laplace's equation in a ball centered at the origin is a linear combination 

of the spherical harmonic functions multiplied by the appropriate scale factor rℓ, 

 

where the are constants and the factors are known as solid harmonics. Such an 

expansion is valid in the ball 

 

ORBITAL ANGULAR MOMENTUM 

 

In quantum mechanics, Laplace's spherical harmonics are understood in terms of the orbital 

angular momentum [4] 

 

 

The is conventional in quantum mechanics; it is convenient to work in units in which 

. The spherical harmonics are Eigen functions of the square of the orbital angular 

momentum 

 

 

Laplace's spherical harmonics are the joint Eigen functions of the square of the orbital angular 

momentum and the generator of rotations about the azimuthal axis: 

These operators commute, and are densely defined self-adjoint operators on the Hilbert space of 

functions ƒ square-integrable with respect to the normal distribution on R3: 
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Furthermore, L2 is a positive operator. 

If Y is a joint Eigen function of L2 and Lz, then by definition 

 

for some real numbers m and λ. Here m must in fact be an integer, for Y must be periodic in the 

coordinate φ with period a number that evenly divides 2π. Furthermore, since 

 

 

and each of Lx, Ly, Lz are self-adjoint, it follows that λ ≥ m2. 

Denote this joint eigenspace by Eλ,m, and define the raising and lowering operators by 

 

 

Then L+ and L− commute with L2, and the Lie algebra generated by L+, L−, Lz is the special 

linear Lie algebra, with commutation relations 

 

 

Thus L+: Eλ,m → Eλ,m+1 (it is a "raising operator") and L− : Eλ,m → Eλ,m−1 (it is a "lowering 

operator"). In particular, Lk +: Eλ,m → Eλ,m+k must be zero for k sufficiently large, because the 

inequality λ ≥ m2 must hold in each of the nontrivial joint Eigen spaces. Let Y ∈ Eλ,m be a 

nonzero joint Eigen function, and let k be the least integer such that 

 

Then, since 

 

it follows that 

 

 

Thus λ = ℓ(ℓ+1) for the positive integer ℓ = m+k. 
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